2021 年推免资格申请表

	2021 中距光频相中隔极																					
姓名	侈	思璐		性别		4	ζ	出生	三年月	目目	199	98年 E		3	学	号	201	6011	019			
民族		汉		籍	贯				陕	西省	(市	、区	()	西	安市	莲湖	胡区	(市))		(=	=
身份证	号	6 1		0	1	1	3	1	9	9	8	0	2	0	3	2	9	2	0		1	
所在学院		() /专 <u>)</u> 数	止学	生	人	动	物图	医学院	रे/17()人	联	系电	话		18	3192	1236	591			A	
何时、何地入党、入团 2010 年 5 月在西安市远东第一中学入团 日在西北农林科技大学动物医学院入党 2020 年第 五星 4 四十 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				201	9 年	月12月] 23															
何时、何地、因何原因 受过何种奖励				20	2020年第五届全国大学生生命科学创新创业大赛优秀成果奖:创新类二等奖。 等奖。 2020年获全国大学生英语四六级模考大赛六级组二等奖 2020年获第四届全国高校商务英语知识竞赛二等奖								类二									
所学:	外语	语种		英	语	通	过量	是高级	别		CE	T-6		J.	战绩				46	3		
思想政治	品德	感成绩		84.	04			前四年	年学:	分成组	责	85.	28	前	四年	三学会	分成组	绩专	业排	名	7	0
申请类	型	□普通			□研; □卓;			团 才计划	1指标	ŧ		双一										
意取消我	战的抗 ———	R证提多 注荐免证 21 年招	代资	格。	, "							和准確		2	签 年	E 4	名: 人 扫: 月	別日	Ro V	15%		,同
			(5		2	,				*	4		2	* }	签 • 年	9	B: か 月 み	% ∃	il		1	
本利	扑卡小	Ł学院	(系	5) ;	党委	()	 总总	支),	付推?	免生息	思想证	政治:	考核	意见	:							
									签	字:					12		党多	を(す		左) 年	(盖章 月	章) 日
推荐	单位	对推免	生	的审	移、	、评	定意	愈见:														
									签	字:							È	自位 4	名称:	(盖章)	
备注:		_																		年	月	日
田仁:																						

注: 1. 此表交本学院(系)留存备查;

2. 若专项实施部门有专用的申请表,请用各专项实施部门的申请表;若专项实施部门没有申请表,申请专项推荐指标的学生须用此表,申请人应将审核盖章的表复印后,原件留存本学院(系),复印件交团委或学生处或"双一流"学科群。

2021 年西北农林科技大学动物医学院优秀应届本科毕业生 免试攻读研究生专家推荐书

被推荐人姓名	倪思璐	性别	女	专业班级	动医 1605 班
拟申请学校	西北农林 科技大学	拟申请专业	预防兽医 学	学分成绩	85. 28
推荐人姓名	陈德坤	职称/职务	教授	专业方向	预防兽医学
工作学院	动物医学 院	与被推荐关系	师生	联系方式	13720492849

作为该生科研锻炼期间的导师,我已与该生接触,交流3年多。在实验室期间通过3年多的观察和沟通,对该生有了比较全面的了解。2016级本科生倪思璐,英语优秀,能够查找翻译以相关文献,具有较强的逻辑思维和创新思维的能力,能够提出自己独特的见解,掌握新技术的能力迅速。善于学习,勤奋刻苦,严格把握实验进度。经常利用周末假期在实验室工作,有时候通宵达旦,在科研方面表现优秀,并进一步深化了专业方面的理论学习,具备了较完善的知识结构和理论水平。

除此之外,我还了解到该生作为预备党员,自觉遵守实验室的规章制度,为人诚恳,尊敬师长,团结实验室师兄师姐积极进取,责任感强,具有良好的思想道德素质。热爱锻炼,身体素质优秀,能够适应高强度的学习和工作,平时积极参加社会实践活动,并取得不错的成绩。担任学生会部长鉴于该生具有较大的发展潜力和培养前途,特推荐该生攻读研究生。

推荐意见

国委维养

推荐人签字: **样 化 样** 年月日 **2020**. **9**. 2)

2021 年西北农林科技大学动物医学院优秀应届本科毕业生 免试攻读研究生专家推荐书

被推荐人姓名	倪思璐	性别	女	专业班级	动医 1605 班
拟申请学校	西北农林 科技大学	拟申请专业	预防兽医	学分成绩	85. 28
推荐人姓名	华进联	职称/职务	教授	专业方向	预防学医
工作学院	动物医学 院	与被推荐关系	师生	联系方式	18392155943

倪思璐同学在大二就到科研实验室进行科研锻炼,并参加了一些项目的科研工作。她对待科研工作认真而且很投入,经常在实验室加班加点工作到深夜。这种勤奋的工作,使得她很快就掌握了许多科研试验技术,为她后续科研成果的取得打下了很好的基础。不仅如此,她还积极与指导老师联系,学习英文文献的查阅和整理,锻炼自己的科研英文论文写作能力。通过她自己的勤奋努力,三年来她取得了以第一作者发表了1篇 SCI论文、第二作者在西北农林科技大学学报发表了1篇论文的好成绩。

该生能够自觉遵守实验室的规章制度,为人诚恳,尊敬师长,团结实验室师兄师姐积极进取,责任感强,具有良好的思想道德素质。热爱锻炼,身体素质优秀,能够适应高强度的学习和工作,平时积极参加社会实践活动,并取得不错的成绩,大三期间,担任我院的学生会部长。

鉴于该生具有较大的发展潜力和培养前途,特推荐该生攻读研究生。

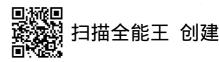
备注: 推荐意见可以是电子版, 签名必须手写

2021 年西北农林科技大学动物医学院优秀应届本科毕业生 免试攻读研究生专家推荐书

被推荐人姓名	倪思璐	性别	女	专业班级	动医 1605 班
拟申请学校	西北农林 科技大学	拟申请专业	预防兽医	学分成绩	85. 28
推荐人姓名	超琴	职称/职务	教授	专业方向	基础各区设
工作学院	动物医学 院	与被推荐关系	师生	联系方式	15191126186

在思想品德方面, 倪思璐同学遵纪守法、热心关心和帮助他人, 积极参与学校的志愿者活动。他时刻关注时政, 通过了解和学习党的有关动态和精神, 使自己在思想上和行动上与党中央保持一致, 积极向党组织靠拢。

在学习方面,该生一直努力认真地学好每一门功课,熟练掌握了本专业有关知识。一份耕耘一分收获,每每看到自己可喜的成绩,她就会感叹只要有决心,没有什么事是不可能的。


在科研方面,该生工作热情,责任心强、勤恳踏实,积极思考。她遇到了比别人多的挫折与失败,但也取得了相对较多的进步,收获很多。鉴于该生具有较大的发展潜力,我推荐该生攻读硕士研究生。

推	
荐	
意	
见	

同意摇巷

推荐人签字: 冬芎苓 年月日

备注: 推荐意见可以是电子版, 签名必须手写

推荐免试攻读研究生承诺书

拟接收单位: <u>动物医</u>学院,以下简称甲方。 推 免 生: <u>倪思璐</u>,以下简称乙方。

双方经充分协商达成以下协议:

- 一、甲方依据学校"关于做好 2021 年接收优秀应届本科毕业生免试 攻读研究生工作的通知"文件, 乙方经考核通过后, 甲方同意拟接收乙方 为推免生。
- 二、乙方一旦确定为甲方专项推荐或普通推荐拟录取推免生,如不遵守该协议,则取消乙方推免资格。
 - 三、本协议如有未尽事宜,由甲、乙双方协商。

四、本协议一式二份,甲、乙双方各保存一份,自双方签字盖章后生效,由拟接收单位备案。

甲方(签字盖章):

年 月 日

乙方(签字): 介别思观众.

2020年9月27日

Neutrophils: A Critical Participator in Common Diseases of Ruminants

Si-Lu NI 1,a,# Fei GAO 1,b,# Chen-Xiang ZUO 1,c Xi-Dian TANG 1,d Ming-Jie LIU 1,e

Jian-Jun CHANG 2,3,f Yong WANG 2,3,g De-Kun CHEN 1,h Wen-Tao MA 1,150

- * Co-first authors
- ¹ Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi Province, CHINA
- ² State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, Qinghai Province, CHINA
- ³ College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, Qinghai Province, CHINA ORCIDs: *0000-0002-9647-7297; *0000-0003-4856-0261; *0000-0003-3901-8454; *0000-0002-6879-7760; *0000-0001-7146-2139 *10000-0001-5460-4545; *0000-0003-4775-7636; *0000-0002-3215-9337; *0000-0002-4747-1489

Article ID: KVFD-2020-24012 Received: 01.02.2020 Accepted: 22.06.2020 Published Online: 27.06.2020

How to Cite This Article

Ni SL, Gao F, Zuo CX, Tang XD, Liu MJ, Chang JJ, Wang Y, Chen DK, Ma WT: Neutrophils: A critical participator in common diseases of ruminants. Kafkas Univ Vet Fak Derg, 26 (5): 719-727, 2020. DOI: 10.9775/kvfd.2020.240120

Abstract

Neutrophils, pivotal effector cells involved in innate immunity, play a central role in various infectious and inflammatory diseases. Using a powerful phagocytic killing mechanism, these cells protect the host by destroying the invading pathogens. However, these cells can also cause varying degrees of tissue damage if their activation is not finely controlled. In recent years, the involvement of neutrophils in human diseases has been extensively studied, while their roles in ruminant diseases have rarely been investigated. In the present review, we mainly summarize current knowledge regarding the characteristics and functions of neutrophils in ruminants such as goats and cattle. We emphasize the involvement of these cells in several common diseases such as mastitis, Brucellosis, Mycoplasma bovis infection and parasitic infections, among others. We also focus on discussing the relevant mechanisms and signaling pathways underlying these observations. In addition, we compare the phenotypes and functions of neutrophils of different ruminant species. The studies about ruminant neutrophils should help elucidate the pathogenesis of many ruminant diseases and ultimately shed light on the development of novel therapeutics for these diseases.

Keywords: Neutrophil, Protective immunity, Tissue damage, Ruminant disease, Immunotherapy

Nötrofiller: Ruminantların Yaygın Hastalıklarında Kritik Katılımcı

Öz

Doğal bağışıklıkla ilişkili önemli efektör hücreler olan nötrofiller, çeşitli bulaşıcı ve inflamatuvar hastalıklarda temel rol oynarlar. Bu hücreler güçlü bir fagositik öldürme mekanizması kullanarak istilacı patojenleri yok eder ve konağı korur. Bununla birlikte, aktivasyonları iyi kontrol edilmezse değişen derecelerde doku hasarına neden olabilirler. Son yıllarda, nötrofillerin insan hastalıkları ile ilişkisi kapsamlı bir şekilde incelenirken, ruminant hastalıklarındaki rolleri nadiren araştırılmıştır. Bu derlemede esas olarak keçi ve sığır gibi ruminantlarda nötrofillerin özellikleri ve fonksiyonları ile ilgili güncel bilgileri özetlenmiştir. Bu hücrelerin mastitis, Bruselloz, Mikoplazma bovis enfeksiyonu ve paraziter enfeksiyonlar gibi yaygın görülen çeşitli hastalıklardaki önemi vurgulanmıştır. Ayrıca, ilgili mekanizmalar tartışılmış ve bu gözlemlerin altında yatan yollara işaret edilmiştir. Ek olarak, farklı ruminant türlerin nötrofillerinin fenotipleri ve işlevleri karşılaştırılmıştır. Ruminant nötrofilleri ile ilgili çalışmalar, birçok ruminant hastalığının patogenezinin aydınlatılmasına yardımcı olmalı ve sonuç olarak bu hastalıklar için yeni terapötiklerin geliştirilmesine ışık tutmalıdır.

Anahtar sözcükler: Nötrofil, Koruyucu bağışıklık, Doku hasarı, Ruminant hastalığı, İmmünoterapi

INTRODUCTION

Neutrophils are polymorphonuclear cells that act as the first line of defense against invading pathogens (1). By rapidly

combating intrusive microorganisms, they limit infections during the initiation stage of an immune response. Neutrophils are the most abundant leukocytes in the blood, where they complete their maturation after migration

Correspondence

+86-29-87092134

mawentao@nwafu.edu.cn

from the bone marrow to the vasculature ^[2]. Although the lifespan of most neutrophils is very short, with a circulating half-life of only 6-8 h, their overall number is stably maintained due to the dynamic balancing of production, retention, mobilization, margination and clearance ^[1]. Unlike most other immune cells, senescent neutrophils are an exceptionally long-lived population that may play an important role in maintaining neutrophil heterogeneity and homeostasis. They can be identified by their surface antigenic profile of CXCR4^{high} CD11b^{high} CD62L^{low} and their uniquely small size and excessive nuclear lobulation ^[3].

Once neutrophils receive signals related to pathogen invasion and inflammation, they immediately migrate to sites where they are needed [1]. Neutrophils have long been considered the terminal effector cells of acute inflammatory response since they basically devour invading pathogens. In addition, numerous studies have shown that neutrophils also release effector molecules including various cytokines, extracellular traps and other effector mediators [2]. These effector molecules are closely tied to the activation, regulation and effector functions of both innate and adaptive immune cells 11. Additionally, neutrophils can release granules containing highly toxic molecules, products of reactive oxygen species (ROS) and inflammatory cytokines, or may undergo NETosis to trap microbial invaders [4]. Consequently, if neutrophilmediated immune responses are not strictly regulated, detrimental inflammations and host tissue damages can be caused as a result [5].

In recent years, ruminant farming has been threatened and impacted partly due to a lack of knowledge regarding invading pathogens and host responses. Because neutrophils are central to disease control and prevention, understanding their roles should be a priority. What has been known is that the morphology, function and quantity of neutrophils vary among different ruminant species ^[6]. Moreover, among healthy dairy goats or cattle, differences in the viability and morphology of blood and milk neutrophils have been reported ^[7].

In this review, we mainly describe the basic characteristics of neutrophils and review the specific roles of neutrophils in ruminants. We also highlight and summarize the roles of reciprocal communication pathways linking neutrophils with common ruminant diseases.

CHARACTERISTICS AND FUNCTIONS OF NEUTROPHILS

Neutrophil Chemotaxis

Neutrophils are the first immune cells to reach sites of inflammation and infection. They are recruited to such sites via chemotaxis, a cellular process depending on the extracellular chemoattractant gradient [8]. Neutrophils

undergoing chemotaxis are polarized, whereby actin filament (F-actin)-based protuberances on their leading edges moving in a synchronized fashion with cytoplasmic contractions and the trailing edge myosin-based movements to move the entire cell forward. Neutrophil movement within a chemoattractant gradient relies on the action of G protein-coupled receptor (GPCR) signaling pathways employing formylated peptide receptors (FPR1/2/3), classical chemoattractant receptors (BLT1/2, PAFR and C5aR) and chemokine receptors (CXCR1/2 and CCR1/2) [1]. After a chemical attractant binds to a GPCR, a receptor conformational change occurs that results in the activation of downstream signaling pathways, including the phospholipase C (PLC) pathway. The PLC pathway activation triggers the production of diacylglycerol (DAG) and inositol triphosphate (IP3) that activate protein kinase C (PKC) and protein kinase D (PKD), which ultimately induce an increase in intracellular calcium level. PKC has multiple isoforms that interact with different participants to promote F-actin activity and regulate cofilin activity [9]. PKD, a direct effector of PLC/PKC axis proteins, can phosphorylate the cofilin phosphatase SSH2 to ultimately regulate downstream cofilin activity during GPCR-mediated neutrophil chemotaxis [10].

Cytotoxic Function

After neutrophils are recruited to sites of infection, they recognize and devour microbes. During this process, their cytotoxic function plays an important role in pathogen killing [8]. This function is made possible during neutrophil differentiation within the bone marrow whereby three types of granule proteins are formed in a stepwise fashion and assembled during maturation into a powerful $pathogen-killing\,weapon.\,Meanwhile, within\,each\,neutrophil$ cytoplasm, numerous secretory vesicles are present that contain various types of plasma membrane receptors such as receptors for lipopolysaccharide (CD14), complement (CR1 and CR3/Mac-1), urokinase-type plasminogen activator, immune complex and chemoattractant (formyl peptide) (11). At the infection site, neutrophil extracellular traps (NETs) also function as critical cytotoxins to promote "neutrophil apoptosis" through the process of "NETosis" to achieve extracellular entrapment of pathogens [4].

SPECIFIC FEATURES OF NEUTROPHILS IN RUMINANTS

Dairy Goat Neutrophils

During peak lactation, neutrophils in the blood and milk of dairy goats differ greatly in their morphological features and functions. Milk neutrophils are derived from migrating blood neutrophils that settle in the mammary gland, where they function to combat invading microbes that penetrate the physiological barriers of the papillary duct [12]. Occasionally, neutrophil band cells are found among blood neutrophils, but never among milk neutrophils. Notably,

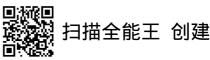
milk neutrophils generally appear to be more mature than their blood counterparts. However, compared with blood neutrophils, milk neutrophils have impaired phagocytosis and oxidative burst functionality and lower viability, which may be due to spontaneous aging, interactions with milk components and/or diapedesis-based effects. Morphologically, milk neutrophils have a more ruffled appearance and possess a multi-lobed nucleus instead of the 2- to 3-lobed nucleus observed in the blood. In addition, milk neutrophils exhibit relatively lower ability to release gelatinase compared to blood neutrophils under both PMA stimulation or non-stimulation conditions [13].

In the 1960s, Paape introduced the term "somatic cells" (SCs) to refer to various types of cells found in mammalian milk [14]. As is well known, SCs are a handful of host cells found in animal milk that are predominantly leukocytes, including macrophages, neutrophils and lymphocytes, with a few epithelial cells. Thus, based on their origins, SCs can be categorized into two groups, blood-derived SCs and epithelial SCs [15]. The somatic cell count (SCC) in the milk of healthy dairy goats differs from that of cows, partially reflecting the differences in host processes that control normal mammary epithelial cell shedding and renewal [16]. Studies have shown that during mastitis, distinct neutrophil changes occur that differ between animal species, with neutrophils significantly outnumbering macrophages in the milk of mastitic sheep and goat, while macrophages predominate in healthy milk [17].

Bovine Neutrophils

Bovine neutrophils in the milk, similar to their goat counterparts, migrate from the blood to the mammary gland to provide the first line of defense against invading pathogens ^[7]. Although neutrophils newly migrating into the mammary gland are active phagocytic cells, they are continuously exposed to inhibitors in milk, such as fat globules and casein, resulting in decreased phagocytic capacity accompanied by morphological alteration ^[18]. Milk neutrophils possess large phagocytic vacuoles containing previously engulfed casein micelles with smooth surfaces and spherical shapes. These micelles are formed during loss of pseudopods by the internalization of pseudopod membrane material that results in milk fat globule formation.

Unlike other animal species in which neutrophils account for multitudinous blood leukocytes, bovine neutrophils make up only 25% of total blood leukocyte numbers. However, mature lactating Holstein cows have a potential pool of more than 100 billion circulating neutrophils that appear to be supplemented by a marginal pool of mature neutrophils adhering to vessel walls [19]. The makeup of neutrophil populations which respond to a particular mammary stimulus depends on the intensity of the stimulus and the strength of the chemotactic agent, with the number of neutrophils in bovine SCs determined by indirect immunofluorescence to be $3\times10^4 \sim 3\times10^6$ cells/mL [20].


Akin to goat neutrophils, bovine neutrophils are also involved in the inflammatory process of mastitis. In fact, a wide variety of neutrophil β-defensins have been isolated that combat invasive pathogens [21]. However, these antimicrobial weapons also damage the fragile inner layer of the mammary gland and lead to permanent scar formation and decreased mammary epithelial cell participation in lactation. Interestingly, co-culture of neutrophils with coldpressed terpeneless Valencia orange oil (TCO) has been shown to increase the chemotaxis of these cells in vitro without altering their phagocytic ability. Indeed, genes reflecting the pro-inflammatory immune response are generally down-regulated in the presence of TCO, resulting in the inhibition of bacterial growth without negatively altering neutrophil function [22], suggesting that TCO may serve as an effective therapy for mastitis.

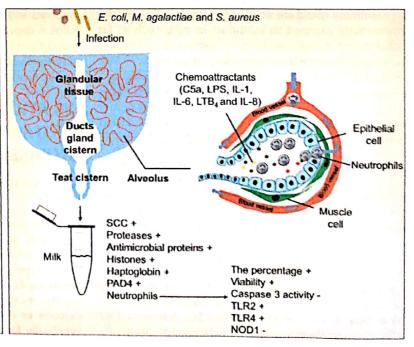
Similarly, butyric acid, a short-chain fatty acid that can exert potent anti-inflammatory effects both in vitro and in vivo, could also serve as a mastitis treatment. Butyric acid acts via several mechanisms to regulate the innate immune response of ruminants: by activating neutrophils, inducing platelet activating factor (PAF), increasing CD63 expression, inducing the release of matrix metalloproteinase-9 (MMP-9) and lactoferrin, inducing NETs formation and through short-chain fatty acids (SCFA)-based pathways [23]. Previous studies have reported that increased production of SCFA is involved in subacute rumen acidosis and the activation of the inflammatory response [24]. In humans and rodents, SCFAs regulate the inflammatory response in the gut through free fatty acid receptor 2 (FFA2), which is activated by butyric acid in cattle. Researchers have found that butyrate activates bovine neutrophils to induce two second messenger events, Ca2+ influx and phosphorylation of mitogen-activated protein kinase (MAPK) that are involved in FFA2 activation. Butyric acid-induced Ca2+ influx is dependent on extracellular and intracellular Ca2+ sources and PLC activation. Therefore, butyric acid appears to be involved in SCFA regulation of inflammation through its effects on neutrophil activation [23].

RELATIONSHIP BETWEEN NEUTROPHILS AND COMMON DISEASES OF RUMINANTS

Role of Neutrophil Leucocyte in Cows and Goats During Mastitis

Mastitis is considered as one of the most complex diseases impacting dairy farming. The disease is caused by inflammation of the mammary gland initiated during several types of bacterial infections, among which *E. coli* infections, *M. agalactiae* infections and *S. aureus* infections are the most common ones [25]. Such infections cause damage or even necrosis of the mammary gland that eventually leads to low milk production and even the

removal of dairy production, seriously hindering the development of the livestock industry and imposing a great economic burden on farmers.


Studies about mastitis have shown that neutrophils can efficiently mount defenses against invading pathogens by migrating from the blood to the mammary gland, where they deploy a cascade of oxidative and non-oxidative response mechanisms to destroy pathogens [26]. In cows with mastitis, both SCC and milk neutrophil percentages are significantly increased while the viability of neutrophils is relatively low [27]. This phenomenon may result from pathogen-based signals that trigger both the release of neutrophils to blood from bone marrow and neutrophil migration from blood through the endothelial cell layer to the mammary gland, ultimately the increase of milk SCC. During this process, chemokine-mediated stimulation is a key determinant of SCC influx. Several potent chemoattractants that recruit milk neutrophils include C5a as well as LPS, interleukin-6 (IL-6), IL-17 and IL-8 [26,28]. Although they are present in increased numbers, milk neutrophils possess decreased viability in mastitis. In a previous study, it was suggested that improving the viability of milk neutrophils might prevent or reduce the severity of E. coli mastitis in dairy cows [29]. In fact, the phagocytic activity of milk neutrophils is higher than blood neutrophils during subclinical and clinical mastitis, with the opposite observed in healthy cows [27]. However, when compared to healthy cows, blood and milk neutrophils from cows with clinical mastitis showed a significantly reduced phagocytic activity. These observations imply that the defense mechanism against invading pathogens of the mammary gland greatly depends on the rate at which neutrophils enter the infection site, their ability to produce

reactive oxygen intermediates (ROI) and the number of circulating neutrophils at the infection site ^[30]. In healthy cows, milk neutrophils could be considered inactive cells when compared to circulating cells, since the phagocytic capacity of milk neutrophils is regulated by ROS production and milk neutrophils presumably undergo apoptosis to reduce ROI production after diapedesis. Nevertheless, the study found that immunosuppression always relied on cortisol, not on apoptosis, regardless of the physiological state of the cows ^[31] (Fig. 1).

Blood neutrophils change their shape as they pass through the mammary epithelial barrier by becoming spherical. Upon entering the mammary gland, they become irregular milk neutrophils with wrinkled outer surfaces. The latter state not only helps to better internalize the cell membrane during phagosome formation, but also increases their surface areas for optimal phagocytosis [30] (Fig. 1).

Bacteria have been shown to undermine neutrophil functions at each of these steps. In mastitis caused by *S. aureus*, IFN- γ serves as a neutrophil priming agent by acting as a primary agonist to influence the early effector arm of the neutrophil response and modulate post-response trafficking ^[32]. However, several researchers have found that *S. aureus* produces membrane-damaging peptides such as α , β , γ , δ -hemolysins, phenol soluble modulins (PSMs) and bi-component leukocidins that directly punch holes in immune cell membranes to lyse the cells ^[33]. Moreover, *S. aureus* employs numerous virulence factors to restrain neutrophil activation, chemotaxis and phagocytosis and target key host effector proteins. For example, extracellular fibrinogen-binding (Efb) protein and staphylococcal complement inhibitor (SCIN) proteins

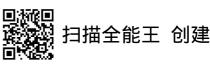
Fig 1. The role of neutrophils in mastitis. In glandular tissues affected by mastitis caused by E. coli, M. agalactiae and S. aureus, neutrophils patrolling in the bloodstream traverse the mammary endothelial cells and enter the mammary alveolus, where they destroy pathogens via oxidative and non-oxidative mechanisms. Neutrophils possess a wrinkled outer surface as they pass through endothelial cells. Within an alveolus, chemoattractants (C5a, LPS, IL-1, IL-6, LTB, and IL-8) tend to induce the participation of additional neutrophils and other immune cells during the inflammatory response. Changes in various milk proteins and cells are designated below the figure: "+" means increased or high expression; "-" means decreased or low expression

can target complement protein C3 convertase to prevent the formation of C3a and C3b, resulting in bacterial resistance to neutrophil phagocytosis [34]. Meanwhile, the S. aureus chemotaxis inhibitory protein (CHIPS) inhibits neutrophil migration and activation, preventing neutrophils from responding to both host- and bacterial-derived chemoattractants. Although toll-like receptor 2 (TLR2)-expressing cells can recognize staphylococcal glycan-related lipoproteins such as staphylococcal iron transporter C (SitC), 5. aureus produces staphylococcus superantigen-like 3 (SSL3) protein that binds to TLR2 and inhibits the activation of neutrophils and other cells expressing TLR2. Crystal structure-based analysis demonstrates that the binding of SSL3 to TLR2 reduces the size of the available lipopeptide binding pocket by 50%, explaining the observed binding inhibition of TLR2 agonist Pam2CSK4. Moreover, S. aureus produces capsular polysaccharides and micro-capsules that may serve as yet another phagocytic escape strategy [35].

Abnormal apoptosis may also be a mechanism involved in neutrophil-based tissue damage in mastitis. Indeed, in the blood and milk of cows with mastitis, neutrophil caspase 3 activity is reduced, which may reflect reduced neutrophil apoptosis that promotes heightened neutrophil activity, ultimately causing tissue damage. Alternatively, the control of inflammation may involve extending neutrophil lifespan via the inhibition of NETosis 4. In yet another possible scenario, higher neutrophil surface expression of TLR2 and TLR4, but not of TLR9, in cows with mastitis might enhance neutrophil pathogen recognition and immune responses, with crosstalk between C5a and neutrophil TLR4 signaling supporting a positive feedback loop that leads to severe mastitis responses (Fig. 1). In this scenario, the onset of inflammatory reactions would somehow be linked to inefficient LPS detoxification that activates C5 cleavage to form C5a; if a large amount of C5a was produced, neutrophils would be activated via the C5a-C5aR pathway, a possible therapeutic target for mastitis treatment [36]. Another potential pathway in mastitis involves the interaction of neutrophils with the nucleotide-binding oligomerization domain-1 (NOD1), a key factor involved in the sensing of conserved bacterial peptidoglycan motifs that initiates pro-inflammatory and antimicrobial responses. In perinatal cows, neutrophil expression of NOD1 is decreased, which results in the inhibition of NOD1/NF-kB signaling, reduced neutrophil migration to E. coli-infected sites and impaired phagocytosis [37] (Fig. 1). The NOD1/NF-kB pathway modulates neutrophil responses to reduce both neutrophilmediated killing of bacteria and ROS production that in turn may control early inflammatory responses. Consequently, artificial restoration of neutrophil NOD1 function might be employed to either prevent or treat E. coli-induced mastitis.

Role of Neutrophil Leucocytes in Brucellosis

Brucellosis, caused by the genus *Brucella*, is a chronic global zoonosis [38]. Within infected macrophages and dendritic cells, pathogenic *Brucella* can replicate efficiently in the


endoplasmic reticulum, a safe intracellular niche at the crossroads of many important host cell functions. There are many subspecies of Brucella, of which B. melitensis, B. abortus and B. suis are the three most common pathogens in humans and livestock [38]. Although Brucella spp. are closely related to each other genetically, they infect a broad range of livestock hosts including goats, cattle, camels, sheep, pigs and even wild animals such as bison, elk and feral swine [39]. Common symptoms of Brucellosis include high abortion rate, high mortality, infertility, low milk yield and a long interval between calving. The ability of Brucella spp. to evade the host immune system determines pathogen virulence, with one demonstrated mechanism involving escape from phagocytic killing. Thus, the mechanism by which neutrophils respond to pathogenic Brucella is a rather interesting and worthwhile research area.

Seminal studies have demonstrated that virulent smooth B. abortus, B. melitensis, B. suis and rough B. canis strains are resistant to neutrophil killing, regardless of whether they are resting or IFN-y-activated. These results suggest that smooth strains may often be more virulent than rough strains. Bovine neutrophils counter infection by both smooth and rough Brucella spp. using oxidative burstbased killing [39]. This mechanism involves the inflammatory signaling regulator TAK1, a MAP3 kinase that is activated in response to cytokines, growth factors and TLR signals [39]. SYK kinase also plays a key role in the response of neutrophils to inflammations and is activated by Fc receptor binding, TAK1 is one of the major regulators of multiple kinase activation downstream of SYK in response to C-type lectin receptor stimulation. By inhibiting TAK1 or SYK, the degree of oxidative burst of neutrophils infected by B. abortus will be reduced, indicating a role of C-type lectin receptor in the response of bovine neutrophils to B. abortus infection [39] (Fig. 2).

A Brucella virulence factor, β cyclic glucan (CβG), which has no toxicity for cells or animals, can induce dual proinflammatory and anti-inflammatory responses leading to transient neutrophil recruitment [40] (Fig. 2). Notably, β -glucan is a polysaccharide of β -D-glucose extracted from cell walls of mushrooms, yeast, oats, barley, seaweed, algae and bacteria. Many researches and clinical studies have suggested that β-glucan acts as a biological response modifier that exhibits anti-tumor and anti-inflammatory properties. It is recognized by various pattern recognition receptors (PRR) expressed on dendritic cells, macrophages and neutrophils. In addition, complement receptor-3 (CR3), lactosylceramides, scavenger receptor and dectin-1 are also involved in β-glucan recognition, the outcome of which can trigger a series of signaling events that regulate the innate and the adaptive immune responses [41].

Effects of Mycoplasma bovis and Mycoplasma Lipoproteins on Neutrophils

Mycoplasma bovis (M. bovis) is the smallest bacterium

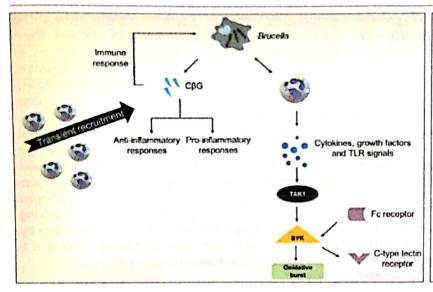
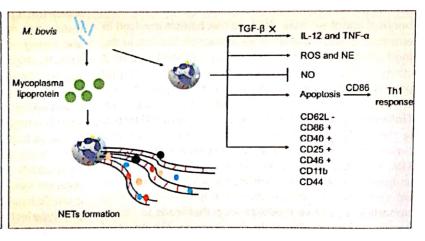



Fig 2. Neutrophils resist invasion by Brucella. Brucella-invading macrophages and other phagocytic cells interact with neutrophils and activate TAK1 in response to neutrophil TLR signals, as well as to multiple cytokines and growth factors. Downstream SYK is then activated by the action of the Fc receptor and further responds to signaling via the C-type lectin receptor. The neutrophil oxidative burst is eventually induced to resist Brucella infection. In addition, the virulence factor CβG produced by Brucella can induce translent neutrophil recruitment

Fig 3. Effects of M. bovis and Mycoplasma lipoproteins on neutrophils. M. bovis invades the body and evades the immune response by accelerating neutrophil apoptosis and inducing ROS and NE production while inhibiting NO production, Subsequently, the Th1 response is induced by CD86-mediated signaling. During M. bovis infection, changes in molecules expressed on the neutrophil surface occur: "+" means increased or high expression; "-" means decreased or low expression; no mark means no change. Furthermore, neutrophils co-cultured with M. bovis could secrete IL-12 and TNF-α in the absence of TGF-β, while pathogen lipoproteins could induce the formation of neutrophil NETs

lacking a cell wall and often causes bovine chronic pneumonia and polyarthritis syndrome, conjunctivitis, otitis media, meningitis and mastitis [42]. These organisms require relatively rigorous cultural conditions for growth, posing a serious hindrance to vaccine preparation and disease prevention. Indeed, the lack of a vaccine has greatly influenced the health, welfare and productivity of dairy and beef cattle.

It has been shown that neutrophils exposed to *M. bovis* exhibit altered bactericidal function *in vitro* and that *M. bovis* inhibits the production of IFN-γ and TNF-α, but not IL-10 ^[43]. While little is known about how *M. bovis* evades host innate immunity, *M. bovis* has been shown to infect and persist within all PBMC subpopulations and erythrocytes ^[44]. Importantly, bacterial survival relies on the triggering of a series of pathogenic responses that delay the apoptosis of host cells. Such responses are carried out through the interaction of bacterial components with multiple proteases to activate cell survival pathways and prevent cytochrome C release. Conversely, *M. bovis* evades immune recognition by accelerating neutrophil apoptosis and inducing ROS production, while *in vitro* experiments have shown that the bacteria can also inhibit

NO production, which has a dual biological role as a signaling molecule and cytotoxin. Meanwhile, IL-12 and TNF- α production in the absence of TGF- β has been observed when bovine neutrophils are infected with M. bovis in vitro. This observation suggests that an activation state is created based on inflammatory cytokines that may enhance the biological response of bovine neutrophils to M. bovis infection. In addition, host NE production is also important for the elimination of M. bovis (Fig. 3) [44].

As a unique survival mechanism during infection, *M. bovis* may drive neutrophils to a state of incompetence, as indicated by a decrease in CD62L expression with the up-regulation of CD86, CD40, CD25 and CD46 [44]. This mechanism appears to help *M. bovis* escape the host immune response and survive *in vitro* [44]. In this scenario, increased neutrophil apoptosis following *M. bovis* stimulation results in the activation of type 1 helper T cell responses, with increased expression of CD86 that is involved in antigen presentation to naive T cells [44] (*Fia. 3*).

As another unique mechanism, mycoplasma lipoprotein, the most abundant component of the mycoplasma membrane, interacts with the host to promote cell adhesion, determine strain virulence and induce NETosis. It is important that only fat-soluble mycoplasma proteins effectively induce NETs formation as an explanation for *M. agalactiae* evasion from NETs both in cultured sheep neutrophils and in mastitic mammary glands [45]. Using a different mechanism, *S. aureus* has been shown to induce macrophage apoptosis by disassembling NETs and converting them to deoxyadenosine, which induces caspase 3-mediated immune cell apoptosis [46]. In contrast, mycoplasma digests NETs DNA scaffolds, a mechanism requiring live bacteria that prevents the transmission of overlapping signals associated with neutrophil DNA and *M. agalactiae* within the mammary gland [45] (Fig. 3).

Role of Neutrophil Leucocyte in Parasitic Infections

Parasitic infections are an enormous hazard to cattle and goat farming. Many studies have shown that NETs act as a novel effector mechanism in innate immunity against parasitic infections such as *Besnoitia besnoiti* (*B. besnoiti*), *Eimeria arloingi* (*E. arloingi*) and *Cryptosporidium parvum* (*C. parvum*) infections in cattle and goats [47].

Cattle infected by B. besnoiti exhibit clinical symptoms such as systemic dermatitis, orchitis and vulvitis. In vitro, bovine neutrophils interact with B. besnoiti tachyzoites to induce rapid formation of NETs, which can be eliminated by DNase treatment or reduced by pre-incubation with NADPH oxidase inhibitors, neutrophil elastase (NE) and MPOs. It appears that neutrophils can immobilize parasites by forming an embedded structure so that other immune cells can be recruited quickly to synergistically kill the pathogen. E. arloingi coccidiosis in goats is mainly characterized by severe enteritis of 4- to 10-week-old goats, with infection rates as high as 100%. Once neutrophils contact E. arloingi, they form NETs during sporozoite or oocyst stages, whereby NETs effectively capture 72% of the sporozoites, greatly reducing the early infection rate [48]. C. parvum causes severe enteritis in neonatal livestock as well, triggering the formation of NETs in a time-dependent manner, whereby sporozoite-triggered NETs depend on intracellular Ca2+ concentration and ERK 1/2- and p38 MAPK-mediated signaling pathways. In fact, about 15% of parasites formed by C. parvum are immobilized in NETs [49].

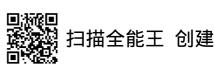
Taken together, as the first line of immune defense, neutrophils play a unique role in parasitic infections. Neutrophils capture such pathogens mainly through the formation of NETs, delaying pathogen spread and promoting further elimination of invading parasites, although the detailed mechanisms are still unclear.

Other Modulators of Neutrophil Responses

In addition to diseases mentioned above, neutrophils also participate in other inflammatory ruminant diseases including bovine leukemia virus infection, *Pasteurella haemolytica* pneumonia, bovine respiratory disease, lung

inflammation induced with Mannheimia hemolytica, pulmonary and systemic inflammation of fetal sheep and Histophilus somni infection, among others.

Host stress responses and viral invasion can adversely impact neutrophil responses and most typically affect neutrophil number without altering their recruitment, leukotoxin sensitivity or responses to bacterial infections. For example, non-cytogenetic bovine viral diarrhea virus infection leads to reduced production of neutrophils in the bone marrow and ultimately persistent neutropenia [50]. When occurring during abrupt weaning stress with increased neutrophil numbers, virus infections can recruits abundant neutrophils to sites of inflammation. However, the virus-triggered type I interferon response limits the production of CXC chemokines, leaving the host vulnerable to deadly secondary infections. Such infections include pulmonary Streptococcus pneumoniae or BRSV infections, the latter of which is characterized by neutrophil airway and alveolar infiltration with lower MPO levels and functionally immaturity [50].


Other factors that modulate neutrophil function include β-hydroxybutyrate, amediator that can attenuate neutrophil phagocytosis and induce the formation of NETs [23]. Meanwhile, glucocorticoids can increase the survival and recruitment of neutrophils [50]. H. somni is able to inhibit an oxidative burst in both neutrophils and alveolar macrophages, while also inducing NETs production in a dose- and time-dependent manner that is not associated with lactate dehydrogenase release [50]. Taken together, both host and pathogen factors can significantly influence neutrophil function, with pathogens employing numerous mechanisms to escape killing by neutrophils and other cells of the immune system.

CONCLUSIONS AND PROSTECTS

We have discussed current knowledge regarding neutrophil chemotaxis and cytotoxic functions. We have also discussed specific features of ruminant neutrophils and the involvement of these cells in common diseases of ruminants. In recent years, studies revealing neutrophil origins, heterogeneity, circadian rhythms and epigenetic control of neutrophil activities have been widely discussed. However, most of these studies are based on humans or mice, researches on ruminant neutrophils are still lacking. Considering that neutrophils are actively involved in various ruminant diseases, further studies are required to explain and understand how neutrophils function during the progression of these diseases. In addition, how to better harness neutrophil activities during disease progression and how to optimally exploit these cells are also needed to explore in the future.

CONFLICT OF INTEREST

The authors declare that no conflict of interest exists.

AUTHOR CONTRIBUTIONS

W-T.M. and F.G. designed the structure of this article, S-L.N., F.G., C-X.Z., X-D.T. and M-J.L. drafted the first version of the manuscript, J-J.C, Y.W., D-K.C. and W-T.M. revised the manuscript.

REFERENCES

- 1. Soehnlein O: Neutrophil research, quo vadis? *Trends Immunol*, 40 (7): 561-564, 2019. DOI: 10.1016/j.it.2019.04.011
- 2. Ley K, Hoffman HM, Kubes P, Cassatella MA, Zychlinsky A, Hedrick CC, Catz SD: Neutrophils: New insights and open questions. *Sci Immunol*, 3 (30): eaat4579, 2018. DOI: 10.1126/sciimmunol.aat4579
- 3. Silvestre-Roig C, Hidalgo A, Soehnlein O: Neutrophil heterogeneity: Implications for homeostasis and pathogenesis. *Blood*, 127 (18): 2173-2181, 2016. DOI: 10.1182/blood-2016-01-688887
- 4. Bryzek D, Ciaston I, Dobosz E, Gasiorek A, Makarska A, Sarna M, Eick S, Puklo M, Lech M, Potempa B, Potempa J, Koziel J: Triggering NETosis via protease-activated receptor (PAR)-2 signaling as a mechanism of hijacking neutrophils function for pathogen benefits. *Plos Pathog*, 15 (5):e1007773, 2019. DOI: 10.1371/journal.ppat.1007773
- 5. Ugur MR, Saber Abdelrahman A, Evans HC, Gilmore AA, Hitit M, Arifiantini RI, Purwantara B, Kaya A, Memili E: Advances in cryopreservation of bull sperm. *Front Vet Sci*, 6: 268, 2019. DOI: 10.3389/fvets.2019.00268
- 6. de Macedo LO, Santos MAB, da Silva NMM, do Rego Barros GMM, Alves LC, Giannelli A, Ramos RAN, de Carvalho GA: Morphological and epidemiological data on Eimeria species infecting small ruminants in Brazil. Small Ruminant Res, 171, 37-41, 2019. DOI: 10.1016/j.smallrumres. 2018.12.006
- 7. Alhussien MN, Dang AK: Potential roles of neutrophils in maintaining the health and productivity of dairy cows during various physiological and physiopathological conditions: A review. *Immunol Res*, 67 (1): 21-38, 2019. DOI: 10.1007/s12026-019-9064-5
- **8. Malech HL, DeLeo FR, Quinn MT:** The role of neutrophils in the immune system: An overview. *Methods Mol Biol*, 2087, 3-10, 2020. DOI: 10.1007/978-1-0716-0154-9_1
- Xu X, Jin T: The Novel functions of the PLC/PKC/PKD signaling axis in g protein-coupled receptor-mediated chemotaxis of neutrophils. J Immunol Res, 2015: 817604, 2015. DOI: 10.1155/2015/817604
- 10. Xu X, Gera N, Li H, Yun M, Zhang L, Wang Y, Wang QJ, Jin T: GPCR-mediated PLCbetagamma/PKCbeta/PKD signaling pathway regulates the cofilin phosphatase slingshot 2 in neutrophil chemotaxis. *Mol Biol Cell*, 26 (5): 874-886, 2015. DOI: 10.1091/mbc.E14-05-0982
- 11. Faurschou M, Borregaard N: Neutrophil granules and secretory vesicles in inflammation. *Microbes Infect*, 5 (14): 1317-1327, 2003.
- 12. Tedde V, Bronzo V, Puggioni GMG, Pollera C, Casula A, Curone G, Moroni P, Uzzau S, Addis MF: Milk cathelicidin and somatic cell counts in dairy goats along the course of lactation. *J Dairy Res*, 86 (2): 217-221, 2019. DOI: 10.1017/S0022029919000335
- **13. Tian SZ, Chang CJ, Chiang CC, Peh HC, Huang MC, Lee JW, Zhao X:** Comparison of morphology, viability, and function between blood and milk neutrophils from peak lactating goats. *Can J Vet Res*, 69, 39-45, 2005.
- 14. Paape MJ, Tucker HA, Hafs HD: Comparison of methods for estimating milk somatic cells. J Dairy Sci, 48, 191-196, 1965.
- 15. Alhussien MN, Dang AK: Milk somatic cells, factors influencing their release, future prospects, and practical utility in dairy animals: An overview. Vet World, 11 (5): 562-577, 2018. DOI: 10.14202/vetworld.2018.562-577
- 16. Norstebo H, Dalen G, Rachah A, Heringstad B, Whist AC, Nodtvedt A, Reksen O: Factors associated with milking-to-milking variability in somatic cell counts from healthy cows in an automatic milking system. Prev Vet Med. 172:104786, 2019. DOI: 10.1016/j.prevetmed.2019.104786
- 17. Shah A, Darzi M, Kamil S, Mir M, Maqbool R, Ali R, Kashani B, Wani H, Bashir A, Dar D, Qureshi S: Somatic cell alteration in healthy and

- mastitic milk of sheep and goats. J Entomol Zool Stud, 5 (6): 27-33, 2017.
- **18.** Aziz M, Matsuda A, Yang WL, Jacob A, Wang P: Milk fat globule-epidermal growth factor-factor 8 attenuates neutrophil infiltration in acute lung injury via modulation of CXCR2. *J Immunol*, 189 (1): 393-402, 2012. DOI: 10.4049/jimmunol.1200262
- **19. Bassel LL, Caswell JL:** Bovine neutrophils in health and disease. *Cell Tissue Res*, 371 (3): 617-637, 2018. DOI: 10.1007/s00441-018-2789-y
- 20. Paape MJ, Bannerman DD, Zhao X, Lee JW: The bovine neutrophil: Structure and function in blood and milk. Vet Res, 34 (5): 597-627, 2003. DOI: 10.1051/vetres:2003024
- 21. Roosen S, Exner K, Paul S, Schroder JM, Kalm E, Looft C: Bovine beta-defensins: Identification and characterization of novel bovine beta-defensin genes and their expression in mammary gland tissue. *Mamm Genome*, 15, 834-842, 2004. DOI: 10.1007/s00335-004-2387-z
- **22. Garcia M, Elsasser TH, Biswas D, Moyes KM:** The effect of citrusderived oil on bovine blood neutrophil function and gene expression in vitro. *J Dairy Sci*, 98 (2): 918-926, 2015. DOI: 10.3168/jds.2014-8450
- 23. Carretta MD, Hidalgo Al, Burgos J, Opazo L, Castro L, Hidalgo MA, Figueroa CD, Taubert A, Hermosilla C, Burgos RA: Butyric acid stimulates bovine neutrophil functions and potentiates the effect of platelet activating factor. *Vet Immunol Immunopathol*, 176, 18-27, 2016. DOI: 10.1016/j.vetimm.2016.05.002
- **24. Zebeli Q. Metzler-Zebeli BU:** Interplay between rumen digestive disorders and diet-induced inflammation in dairy cattle. *Res Vet Sci*, 93 (3): 1099-1108, 2012. DOI: 10.1016/j.rvsc.2012.02.004
- 25. Heikkila AM, Liski E, Pyorala S, Taponen S: Pathogen-specific production losses in bovine mastitis. *J Dairy Sci*, 101 (10): 9493-9504, 2018. DOI: 10.3168/jds.2018-14824
- 26. Katsafadou Al, Politis AP, Mavrogianni VS, Barbagianni MS, Vasileiou NGC, Fthenakis GC, Fragkou IA: Mammary defences and immunity against mastitis in sheep. *Animals*, 9 (10):726, 2019. DOI: 10.3390/ani9100726
- 27. Alhussien M, Kaur M, Manjari P, Kimothi SP, Mohanty AK, Dang AK: A comparative study on the blood and milk cell counts of healthy, subclinical, and clinical mastitis Karan Fries cows. *Vet World*, 8 (5): 685-689, 2015. DOI: 10.14202/vetworld.2015.685-689
- 28. Hu X, He Z, Jiang P, Wang K, Guo J, Zhao C, Cao Y, Zhang N, Fu Y: Neutralization of interleukin-17A attenuates lipopolysaccharide-induced mastitis by inhibiting neutrophil infiltration and the inflammatory response. *J Interferon Cytokine Res*, 39 (9): 577-584, 2019. DOI: 10.1089/jir.2019.0069
- **29.** Mehrzad J, Duchateau L, Burvenich C: Viability of milk neutrophils and severity of bovine coliform mastitis. *J Dairy Sci*, 87 (12): 4150-4162, 2004. DOI: 10.3168/jds.S0022-0302(04)73558-4
- 30. Swain DK, Kushwah MS, Kaur M, Patbandha TK, Mohanty AK, Dang AK: Formation of NET, phagocytic activity, surface architecture, apoptosis and expression of toll like receptors 2 and 4 (TLR2 and TLR4) in neutrophils of mastitic cows. *Vet Res Commun*, 38, 209-219, 2014. DOI: 10.1007/s11259-014-9606-1
- 31. Alhussien M, Manjari P, Sheikh AA, Mohammed Seman S, Reddi S, Mohanty AK, Mukherjee J, Dang AK: Immunological attributes of blood and milk neutrophils isolated from crossbred cows during different physiological conditions. *Czech J Anim Sci*, 61 (5): 223-231, 2016. DOI: 10.17221/63/2015-cjas
- **32. Ellis TN, Beaman BL:** Interferon-gamma activation of polymorphonuclear neutrophil function. *Immunology*, 112, 2-12, 2004. DOI: 10.1111/j.1365-2567.2004.01849.x
- **33. Vandenesch F, Lina G, Henry T:** Staphylococcus aureus hemolysins, bi-component leukocidins, and cytolytic peptides: A redundant arsenal of membrane-damaging virulence factors? Front Cell Infect Microbiol, 2:12, 2012. DOI: 10.3389/fcimb.2012.00012
- 34. Foster TJ: Immune evasion by Staphylococci. Nat Rev Microbiol, 3, 948-958, 2005. DOI: 10.1038/nrmicro1289
- **35. van Kessel KP, Bestebroer J, van Strijp JA:** Neutrophil-mediated phagocytosis of *Staphylococcus aureus*. *Front Immunol*, 5:467, 2014. DOI: 10.3389/fimmu.2014.00467

- 36. Stevens MG, De Spiegeleer B, Peelman L, Boulougouris XJ, Capuco AV, Burvenich C: Compromised neutrophil function and bovine E. coli mastitis: Is C5a the missing link? Vet Immunol Immunopathol, 149 (3-4): 151-156, 2012. DOI: 10.1016/j.vetimm.2012.07.002
- 37. Wei LJ, Tan X, Fan GJ, Jiang YN, Shah QA: Role of the NOD1/ NF-kappaB pathway on bovine neutrophil responses to crude lipopolysaccharide. Vet J, 214, 24-31, 2016. DOI: 10.1016/j.tvjl.2016.02.006
- 38. Charypkhan D, Sultanov AA, Ivanov NP, Baramova SA, Taitubayev MK, Torgerson PR: Economic and health burden of brucellosis in Kazakhstan. Zoonoses Public Health, 66 (5): 487-494, 2019. DOI: 10.1111/zph.12582
- **39. Keleher LL, Skyberg JA:** Activation of bovine neutrophils by Brucella spp. *Vet Immunol Immunopathol,* 177, 1-6, 2016. DOI: 10.1016/j. vetimm.2016.05.011
- **40. Degos C, Gagnaire A, Banchereau R, Moriyon I, Gorvel JP:** Brucella CβG induces a dual pro- and anti-inflammatory response leading to a transient neutrophil recruitment. *Virulence*, 6 (1): 19-28, 2015. DOI: 10.4161/21505594.2014.979692
- **41.** Bashir KMI, Choi JS: Clinical and physiological perspectives of beta-glucans: The past, present, and future. *Int J Mol Sci*, 18 (9): 1906, 2017. DOI: 10.3390/ijms18091906
- 42. Burki 5, Frey J, Pilo P: Virulence, persistence and dissemination of Mycoplasma bovis. Vet Microbiol, 179 (1-2): 15-22, 2015. DOI: 10.1016/j. vetmic.2015.02.024
- **43. Gondaira S, Higuchi H, Nishi K, Iwano H, Nagahata H:** *Mycoplasma bovis* escapes bovine neutrophil extracellular traps. *Vet Microbiol,* 199, 68-

- 73, 2017. DOI: 10.1016/j.vetmic.2016.12.022
- 44. Jimbo S, Suleman M, Maina T, Prysliak T, Mulongo M, Perez-Casal J: Effect of Mycoplasma bovis on bovine neutrophils. Vet Immunol Immunopathol, 188, 27-33, 2017. DOI: 10.1016/j.vetimm.2017.04.011
- 45. Cacciotto C, Cubeddu T, Addis MF, Anfossi AG, Tedde V, Tore G, Carta T, Rocca S, Chessa B, Pittau M, Alberti A: Mycoplasma lipoproteins are major determinants of neutrophil extracellular trap formation. *Cell Microbiol*, 18 (12): 1751-1762, 2016. DOI: 10.1111/cmi.12613
- **46. Thammavongsa V, Missiakas DM, Schneewind O:** *Staphylococcus aureus* degrades neutrophil extracellular traps to promote immune cell death. *Science*, 342 (6160): 863-866, 2013. DOI: 10.1126/science.1242255
- **47. Carlsen ED, Liang Y, Shelite TR, Walker DH, Melby PC, Soong L:** Permissive and protective roles for neutrophils in leishmaniasis. *Clin Exp Immunol*, 182 (2): 109-118, 2015. DOI: 10.1111/cei.12674
- 48. Silva LM, Caro TM, Gerstberger R, Vila-Vicosa MJ, Cortes HC, Hermosilla C, Taubert A: The apicomplexan parasite *Eimeria arloingi* induces caprine neutrophil extracellular traps. *Parasitol Res*, 113, 2797-2807, 2014. DOI: 10.1007/s00436-014-3939-0
- **49.** Munoz-Caro T, Lendner M, Daugschies A, Hermosilla C, Taubert A: NADPH oxidase, MPO, NE, ERK1/2, p38 MAPK and Ca²⁺ influx are essential for *Cryptosporidium parvum*-induced NET formation. *Dev Comp Immunol*, 52 (2): 245-254, 2015. DOI: 10.1016/j.dci.2015.05.007
- **50. Caswell JL:** Failure of respiratory defenses in the pathogenesis of bacterial pneumonia of cattle. *Vet Pathol*, 51 (2): 393-409, 2014. DOI: 10.1177/0300985813502821

检索报告

根据委托人倪思璐委托,通过网络检索,倪思璐发表的1篇论文被《科学引文索引》扩展版(SCI-Expanded)数据库收录。数据库具体检索结果如下:

标题: Neutrophils: A Critical Participator in Common Diseases of Ruminants 作者:Ni, SL (Ni, Si-Lu)[1]; Gao, F (Gao, Fei)[1]; Zuo, CX (Zuo, Chen-Xiang)[1]; Tang, XD (Tang, Xi-Dian)[1]; Liu, MJ (Liu, Ming-Jie)[1]; Chang, Jian-Jun)[2,3]; Wang, Y (Wang, Yong)[2,3]; Chen, DK (Chen, De-Kun)[1]; Ma, WT (Ma, Wen-Tao)[1]

KAFKAS UNIVERSITESI VETERINER FAKULTESI DERGISI

卷: 26 期: 5 页: 719-727

DOI: 10.9775/kvfd.2020.24012 出版年: SEP-OCT 2020 文献类型:Review 通讯作者地址: Ma, WT (通讯作者)Northwest Agr & Forestry Univ, Coll Vet Med, Vet Immunol Lab, Yangling 712100, Shaanxi, Peoples R China.

地址:[1] Northwest Agr & Forestry Univ, Coll Vet Med, Vet Immunol Lab, Yangling 712100, Shaanxi, Peoples R China

- [2] Qinghai Univ, State Key Lab Plateau Ecol & Agr, Xining 810016, Qinghai, Peoples R China
- [3] Qinghai Univ, Coll Agr & Anim Husb, Xining 810016, Qinghai, Peoples R China 电子邮件地址:mawentao@nwafu.edu.cn

出版商: KAFKAS UNIV, VETERINER FAKULTESI DERGISI, KAFKAS UNIV, VETERINER FAKULTESI DERGISI, KARS, 36040, TURKEY

研究方向:Veterinary Sciences

Web of Science 类别:Veterinary Sciences

语言:English 入藏号: WOS:000562133000020

ISSN: 1300-6045 IDS 号: ND8DM

Web of Science 核心合集中的 "引用的参考文献": 50

Web of Science 核心合集中的 "被引频次": 0

第一作者倪思璐,第一署名单位西北农林科技大学动物医学院,兽医免疫实验室。通讯作者马文涛,署名单位西北农林科技大学动物医学院,兽医免疫实验室。2020年公布的影响因子,0.489、期刊分区。

JCR® 类别	类别中的排序	JCR 分区
VETERINARY SCIENCES	113/142	Q4

2019年公布的中科院期刊分区:

	学科名称 学科名称	分区	Top 期刊
小类	VETERINARY SCIENCES 兽医学	4	-
大类	农林科学	4	否

査证检索:

通讯储:安治

本的2020年9月27日

网络出版时间:2019-04-22 17:35 DOL:10, 13207/j, cnki, jnwafu, 2019, 11, 001 网络出版地址:http://kns. cnki, net/kcms/detail/61, 1390, S, 20190422, 1733, 002, html

奶山羊 IL-6 与 TGF-β1 融合蛋白的 制备及其活性检测

庞 明¹,董佳易¹,倪思璐¹,管 雄¹,张煜琛²,陈德坤¹

(1 西北农林科技大学 动物医学院,陕西 杨凌 712100;2 陕西省咸阳市食品药品检验检测中心,陕西 咸阳 712000)

[摘 要]【目的】制备具有免疫活性的奶山羊自细胞介素 6(Interleukin-6,IL-6)与转移生长因子-βl(Transfer growth factor-βl,TGF-βl)融合蛋白。【方法】采集奶山羊外周血,分离外周血单个核细胞(Peripheral blood mononuclear cell,PBMCs),将 PBMCs 用刀豆蛋白 A(ConA)刺激后提取其总 RNA,RT-PCR 扩增 IL-6 与 TGF-βl 基因,构建 其克隆载体及原核表达载体 pET-32a-TGF-βl 和 pET-32a-TGF-βl 和 pET-32a-IL-6.然后进行 PCR 和测序鉴定。将原核表达载体 pET-32a-TGF-βl 和 pET-32a-IL-6 转化至大肠杆菌 BL21(DE3)中,用 IPTG 诱导表达,以镍柱纯化试剂盒纯化 IL-6 与 TGF-βl 重组蛋白,对表达产物和纯化后的蛋白进行 SDS-PAGE。用纯化的 IL-6,TGF-βl 蛋白刺激 PBMCs,以甘油醛-3-磷酸脱氢酶 GAPDH 基因为内参,采用 qRT-PCR 法检测 PBMCs IL-17 mRNA 的表达量。【结果】RT-PCR 扩增获得了 627 bp的 IL-6 基因片段和 1 137 bp的 TGF-βl 基因片段,成功构建了 IL-6 和 TGF-βl 基因的克隆载体及 pET-32a-TGF-βl 和 pET-32a-IL-6 原核表达载体,并在大肠杆菌 BL21(DE3)中得到成功表达;获得了纯化的奶山羊 IL-6 与 TGF-βl 融合蛋白,该融合蛋白联合刺激能使 PBMCs 的 IL-17 mRNA 表达水平显著升高。【结论】获得了具有免疫活性的奶山羊 IL-6 与 TGF-βl 重组蛋白。

[关键词] 奶山羊:白细胞介素 6;转移生长因子-β1;融合蛋白

[中图分类号] S858.275.3

[文献标志码] A

[文章编号] 1671-9387(2019)11-0001-07

Preparation and function detection of purified fusion protein of dairy goat IL-6 and TGF-β1

PANG Ming¹, DONG Jiayi¹, NI Silu¹, GUAN Xiong¹, ZHANG Yuchen², CHEN Dekun¹

(1 College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China;

2 Shaanxi Xianyang Food and Drugs Inspection and Testing Center , Xianyang , Shaanxi 712000 , China)

Abstract: 【Objective】 This study aimed to obtain immunologically active purified fusion protein of dairy goat interleukin-6(IL-6) and transfer growth factor-β1 (TGF-β1). 【Method】 Peripheral blood of dairy goats was collected and peripheral blood mononuclear cells (PBMCs) were isolated. PBMCs were stimulated by concanavalin A (ConA) and total RNA was extracted. The IL-6 and TGF-β1 genes were amplified by RT-PCR, and the cloning vector and prokaryotic expression vectors pET-32a-TGF-β1 and pET-32a-IL-6 were constructed and identified by PCR and sequencing. The prokaryotic expression vectors pET-32a-TGF-β1 and pET-32a-IL-6 were transformed into E. coli BL21(DE3) and induced by IPTG. The protein of IL-6 and TGF-β1 was purified by nickel column purification kit. The expression product and the purified protein were identified by SDS-PAGE. PBMCs were stimulated with purified IL-6 and TGF-β1 protein. The ex-

[收稿日期] 2018-10-30

[基金项目] 青海省重点研发与转化计划项目(NMSY-2018-07);咸阳市重大科技专项(2017K01-34);陕西省重点产业创新链项目 (2018ZIXCXL-NY-01-96)

[作者简介] 庞 明(1996-),新疆石河子人,本科在读,主要从事兽医免疫学研究。E-mail:pangming@nwafu, edu, cn

[通信作者] 陈德坤(1964-),陕西渭南人,教授,博士生导师,主要从事山羊重大疫病防控研究。E-mail;cdk@nwafu,cdu.cn

pression of *IL*-17 mRNA in PBMCs was detected by qRT-PCR with glyceraldehyde-3-phosphate dehydrogenase *GAPDH* gene as internal reference. [Result] A 627 bp *IL*-6 gene fragment and a 1 137 bp *TGF*-β1 gene fragment were obtained by RT-PCR. The cloning vectors of *IL*-6 and *TGF*-β1 genes and pET-32a-TGF-β1 and pET-32a-IL-6 were successfully constructed. Prokaryotic expression vector was successfully expressed in *E. coli* BL21 (DE3), and purified dairy goat IL-6 and TGF-β1 fusion protein was obtained. The IL-6 and TGF-β1 fusion protein combined stimulation promoted the *IL*-17 mRNA expression level of PBMCs significantly. [Conclusion] The immunologically active purified fusion protein of dairy goat IL-6 and TGF-β1 was successfully obtained.

Key words: dairy goat: IL-6: TGF-β1: purified fusion protein

近几年来,国内奶山羊养殖数量不断增加,养殖地区也突破原有的省份并不断向国内多个地区辐射^[1]。受自然牧草资源的限制,目前我国奶山羊饲养模式主要以舍饲养殖为主^[2],这种饲养模式有很多优点,但其养殖群体中多种疫病的发生率也明显高于放牧养殖群体,其中严重影响奶山羊养殖经济效益的疫病主要有乳房炎、传染性胸膜肺炎和羊口疮等^[3-3],这些疫病以奶山羊乳房、肺脏和口唇部呈现严重的病理性炎症反应为主要特征,在奶山羊舍饲养殖群体中普遍流行。国内奶山羊隐性乳房炎检出率为30%~85%^[6],羊口疮的检出率为15%~90%^[4-7],羊传染性胸膜炎的发病率为19%~90%^[5]。造成这种现状的主要原因是针对性防控措施不得力,其根源在于对这些疫病病原的免疫防御机制不清楚。

在炎症性疫病发病过程中,受促炎性细胞因子 和趋化因子的影响,多种免疫细胞被募集到炎症部 位,通过吞噬和分泌作用清除病原微生物。伴随这 一过程的是反应部位自身组织细胞也会受到损伤并 发生病理学变化,进而影响到机体生理功能的正常 发挥。大量研究表明,作为典型的促炎性细胞因子 之一,白细胞介素 6 (Interleukin-6,IL-6)水平在炎 症过程中会显著升高,其增高幅度与炎症反应的严 重程度呈正相关[8]。与此相反,转移生长因子β (Transforming growth factor-β, TGF-β)则属于炎 症反应抑制性细胞因子, TGF-β 分为 TGF-β1、 TGF-β2 和 TGF-β3,其中 TGF-β1 在机体炎症反应 过程中起重要的免疫调节作用[9]。令人感兴趣的 是,当微环境中的 IL-6 和 TGF-β 水平同时有所升 高时,就会介导一种新发现的 T 细胞亚群,即 Th17 细胞的产生[10-11]。

有研究指出,Th17细胞在炎症疾病发生过程中发挥着至关重要的作用,Th17细胞可以通过分泌IL-17等细胞因子来募集,活化中性粒细胞到达炎

症部位并清除病原体,从而介导免疫反应维持机体自稳^[12]3]。有研究证明,在小鼠模型中,TGF-β1 和 IL-6 共刺激可使小鼠 Th(辅助性 T 细胞)分化为 Th17 细胞^[11-11],而在体外只需要 IL-1 和 IL-6 细胞 因子即可诱导人 Th17 的产生^[15-15]。在奶山羊的炎症发病过程中,IL-6 和 TGF-β1 等主要炎症相关细胞因子的作用及其与 Th17 细胞分化的关系等变细胞因子的作用及其与 Th17 细胞分化的关系等炎症相关到阐明,尤其是奶山羊乳房炎、羊口疮等炎症对性地制定这些疫病的高效防控措施带来了困难。基于此,本研究对奶山羊 IL-6 和 TGF-β1 基因进行了克隆表达,并对其表达产物的活性进行了检测,旨在为 IL-6 和 TGF-β1 等细胞因子在奶山羊炎性疾病中的作用机制研究提供有益的参考资料,进而为奶山羊疫病防控措施的制定提供参考依据。

1 材料与方法

1.1 材料

雕性 22 月龄健康萨能奶山羊,购自陕西咸阳某 羊场。大肠杆菌 DH5α和 BL21 (DE3)、质粒 pET-32a,由西北农林科技大学动物医学院兽医免疫学实验室保存。Total RNA 提取试剂盒、限制性核酸内切酶(BamH I、Xho I 和 EcoR I)、T4 连接酶、SYBR Premix Ex TaqTM II 试剂盒和镍柱纯化试剂盒,均购自 TaKaRa 生物技术有限公司。刀豆蛋白A(ConA),购自 Solarbio 科技有限公司。SanPrep柱式 DNA 胶回收试剂盒、SanPrep柱式质粒 DNA 小量抽提回收试剂盒、均购自生工生物工程有限公司。FastKing RT Kit (With gDNase),购自天根生化科技有限公司。pClone007 Blunt Simple Vector Kit,购自擎科生物技术有限公司。

1.2 试验方法

1.2.1 IL-6与 TGF-β1 基因的 RT-PCR 扩增 根据 NCBI 中收录的山羊 TGF-β1 (GenBank 号为:

NM_001314142. 1) 和 IL-6 (GenBank 号为: NM_ 001285640. 1)mRNA CDS 区序列,分别用 NCBI 中

Primer blast 在线工具和 Primer 5.0 设计引物(表 1),并由 Invitrogen 公司合成。

表 1 用于扩增奶山羊 IL-6 和 TGF-β1 基因的引物

Table 1 Dairy goat 11-6 and TGF-β1 primer sequences used for amplification

	Table I Dairy goat it.		
基因	引物序列(5'→3') Primer sequence (5'→3')	退火温度/℃ Tm	预期目的片段长度/bp Expected segment length
Gene	F:ATGCCGCCTTCGGGGCTGCGGCTGCTGC	56	1 173
$TGF\beta$ 1	R: TCAGCTGCACTTGCAGGAGCGCACGATC		
IL-6	F: ATGAACTCCCTCTTCACAAGCG	59	627
IL 0	R _z CTACTTCATCCGAATAGCTCTCAGG		

采集奶山羊外周血,常规方法[17]分离外周血单 个核细胞(Peripheral blood mononuclear cell, PB-MCs),加入 ConA 至终质量浓度为 20 μg/mL,培养 72 h。收集 PBMCs,按照 Total RNA 提取试剂盒说 明书提取总 RNA。以提取的总 RNA 为模板,采用 RT-PCR 方法扩增 IL-6 和 TGF-β1 基因,试验以 ddH2O 代替模板的处理为阴性对照。RT-PCR 体 系为 25 μL,具体体系按照 FastKing RT Kit 试剂说 明书进行配制。RT-PCR 反应条件为:50 ℃反转录 30 min;扩增反应程序为:94 ℃ 5 min;94 ℃ 60 s, 56 或 59 ℃ (TGF-β1 56 ℃,IL-6 59 ℃)退火 30 s,72 ℃延伸 90 s,共 32 个循环;72 ℃延伸 10 min。取 5 μL PCR 产物,用 2%琼脂糖凝胶进行电泳,紫外凝 胶成像系统观察记录结果后,切下含目的片段的琼 脂胶,采用 SanPrep 柱式 DNA 胶回收试剂盒进行 胶回收。

1.2.2 IL-6与 TGF-β1 基因克隆载体的构建 将RT-PCR 扩增的 IL-6和 TGF-β1 基因片段与pClone007 Blunt-end Simple Vector 连接,具体操作按照 pClone007 Blunt Simple Vector 说明书进行。将连接产物转化感受态 DH5α-培养后,提取单菌落,接种于 4 mL 含 50 μg/mL 氨苄(Amp),抗性的 LB液体培养中,37℃振荡培养 12 h,取 1 μL 进行 PCR 鉴定,试验同时以 ddH_2O 代替模板的处理为阴性对照。将菌液 PCR 为阳性的单克隆菌液送擎科生物技术有限公司测序。

1.2.3 IL-6与 TGF-β1 基因原核表达载体的构建 根据 NCBI 中收录的山羊 TGF-β1 和 IL-6 基因 mRNA CDS 区序列,结合载体图谱及 Primer 5.0 软件预测的信号肽序列,用 Primer 5.0 软件设计引 入酶切位点的引物,其扩增产物不包含信号肽。引 物由 Invitrogen 公司合成,其相关信息见表 2。

表 2 用于扩增奶山羊去信号肽 IL-6 和 TGF-β1 基因的引物

Table 2 Dairy goat IL-6 and TGF-β1 without signal peptide primer sequences used for amplification

基因 Gene	引物序列(5'->3') Primer sequence (5'->3')	退火温度/℃ Tm	預期目的片段 长度/bp Expected segment length
去信号肽 TGF-p1	F:TAAGGATCCGCCCTGGACACCAACTACTGCTTCA	56	339
TGF-p1 without signal peptide 去信号肽 IL-6	R:TTA CTCGAGTCAGCTGCACTTGCAGGAGCGCACGATC F:CCGGAATTCTTCCCTACCCCGGGTCCCCT	59	552
大臣 9版 116 IL-6 without signal peptide	R:CCGCTCGAGCTACTTCATCCGAATAGCTCTCAGG	23	332

注:GGATCC、CTCGAG、GAATTC 分别为 BamH I、Xho I、EcoR I 限制性內切積酶切位点。

Note: GGATCC, CTCGAG, GAATTC is BamH I, Xho I, EcoR I restriction enzyme cutting site respectively.

将克隆载体阳性菌液 $8\,000\,$ r/ min 离心 $3\,$ min. 收集菌体沉淀,用 SanPrep 柱式质粒 DNA 小量抽提回收试剂盒提取质粒。以提取的质粒为模板,PCR 扩增去信号肽的 TGF- β 1 和 IL-6 基因,PCR 体系为 $25\,$ μ L;Mix $12.5\,$ μ L,上、下游引物各 $1\,$ μ L,DNA 模板 $1\,$ μ L,ddH $_2$ O $9.5\,$ μ L,反应程序同 $1.2.1\,$ 节。用限制性内切酶 BamH I/Xho I 双酶切 TGF- β 1 PCR 扩增产物和表达载体 pET-32a,用 Xho I/EcoR I 双酶切 IL-6 PCR 扩增产物和表达载体 pET-32a,分别纯化回收 PCR 产物与表达载体

pET-32a 片段,T4 连接酶连接,构成原核表达载体 pET-32a-TGF- β 1 和 pET-32a-IL-6。将连接产物转 化至感受态大肠杆菌 BL21(DE3),用 Amp 抗性 LB 平板(Λ mp 50 μ g/mL)筛选、PCR 筛选,获得阳性克隆送擎科生物技术有限公司测序。

1.2.4 重组蛋白 IL-6 与 TGF-β1 的诱导表达和纯化 将鉴定含有正确重组质粒的大肠杆菌 BL21 (DE3) 菌液,按体积比 1:100 的比例接种到含 50 μg/mL Λmp 的 LB 培养基中,37 ℃培养箱中过夜培养;取过夜培养南液按体积比 1:50 接种至 4 mL

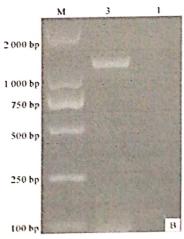
LB培养基、37℃振荡培养出现云雾样、加入 IPTG 至终浓度为 1 mmol/L、37℃诱导 4 h; 收集 3 mL 菌液、8 000 r/min 离心 3 min 后取上清、用 PBS 洗涤沉淀 2 次、最后用 100 μL PBS(pH 7) 悬浮。取 5 mL诱导重组菌液、8 000 r/min 离心 3 min、取沉淀的菌体用 PBS 洗涤 2 次、将沉淀重悬于 0.5 mL 热解缓冲液中,超声(300 W、工作 10 s,间歇 10 s) 裂解 20 min、12 000 r/min 离心 15 min、将上清液移入新的 EP 管中。取收集的上清液用镍柱纯化试剂盒进行蛋白纯化,具体操作按镍柱纯化试剂盒说明书进行。取诱导表达样品及纯化后的样品、加入 5×SDS上样缓冲液、水浴煮沸 10 min,进行 SDS-PAGE 电泳鉴定,同时以未诱导重组菌液、诱导空载体菌液为对照。

1.2.5 IL-6 与 TGF- β 1 重组蛋白的免疫学活性检测 调整 PBMCs 密度为 1×10^6 mL⁻¹,加入 24 孔细胞培养板,每孔 100 μL,然后每孔再加入 20 μg/mL的 ConA 50 μL。将上述 PBMCs 分为对照组、IL-6 组、TGF- β 1 组和 IL-6+TGF- β 1 组,其中对

照组加入 50 µL 的培养液,IL-6 组细胞每孔加入 25 μL的 1 ng/mL 重组蛋白 IL-6 和 25 μL 培养液, TGF-β1 组细胞每孔加入 25 μL 的 10 ng/mL 重组 蛋白 TGF-β1 和 25 μL 培养液,IL-6+TGF-β1 组细 胞每孔加 1 ng/ml. 重组蛋白 IL-6 和 10 ng/ml. 重 组蛋白 TGF-βl 各 25 μL。各组细胞培养 72 h 后, 提取总 RNA,检测核酸质量浓度。调整核酸质量浓 度为 200 ng/μL,使用 600 ng RNA 反转录得到 cD-NA。以甘油醛-3-磷酸脱氢酶基因(GAPDH)为内 参,采用 SYBR 实时荧光定量 PCR 法(qRT-PCR)检 测 IL-17 mRNA 的表达水平。根据 NCBI 中收录的 IL-17(GenBank 号为: NM_002190. 3)和 GAPDH (GenBank 号为:NM_014364.5) mRNA CDS 区序列。 在线设计 IL-17 和 GAPDH 基因引物(表 3)。 qRT-PCR 反应体系为 15 μL,具体体系按照 SYBR Premix Ex Taq™ II 试剂盒说明书进行配制。 qRT-PCR 反应条件为两步法,先 95 ℃ 预变性 15 min,再进行 PCR 反应(95 ℃ 10 s,60 ℃ 32 s,40 个 循环)。

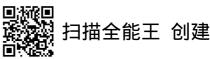

表 3 用于 IL-17 与 GAPDH 基因扩增的引物

Table 3 IL-17 and GAPDH primer sequences used for amplification


基因 Gene	引物序列(5'→3') Primer sequence (5'→3')	退火温度/℃ Tm	预期目的片段长度/bp Expected segment length
	F:GAGGGACTTATGACCACTGTCC	52	122
GAPDH	R:CCAGTAGAAGCAGGGATGATGT		Expected segment lengt
11 17	F.CCCACCTACTGAGGACAAGAAC	57	151
IL-17	R-GTACCTCTCAGGGTCCTCATTG		Expected segment length

2 结果与分析

2.1 *IL*-6 与 *TGF*-β1 基因的 RT-PCR 扩增 RT-PCR 扩增结果(图 1)显示,成功在 500~



750 bp 扩增出了 IL-6 的预期片段(图 1-A),在 $1000\sim2000$ bp 扩增出了 TGF- $\beta1$ 的预期片段(图 1-B)。

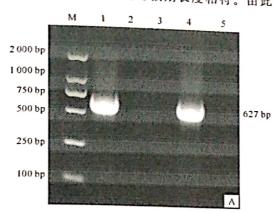
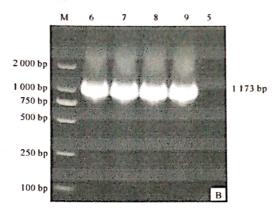

A. IL-6 基因:B. TGF:31 基因。M. 2000DL Marker:1. 刚性对照:2. IL-6 基因扩增产物:3. TGF:31 基因扩增产物
A. IL-6 gene:B. TGF:31 gene, M. 2000DL Marker:1. Negative control:2. Amplification of IL-6 gene:3. Amplification of TGF:31 gene
图 1 奶山羊 IL-6 与 TGF:31 基因的 RT-PCR 扩增

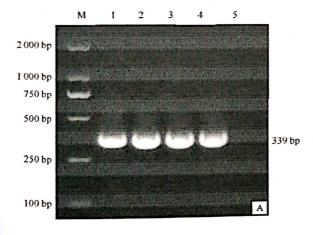
Fig. 1 PT-PCR amplification of dairy goat IL-6 and TGF-β1 gene

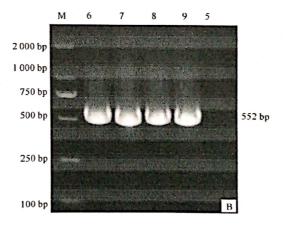


2.2 IL-6 与 TGF-β1 基因克隆载体的鉴定

PCR 鉴定结果(图 2)显示,成功获得了 627 bp 的 IL-6(图 2-A)和 1 173 bp 的 TGF- β 1(图 2-B)目的片段,测序鉴定结果表明与预期长度相符。由此

表明, IL-6 和 TGF-β1 核酸片段已成功插入到克隆 载体中,获得了碱基序列和片段长度与预期结果完 全一致的克隆载体, IL-6 和 TGF-β1 基因克隆载体 构建成功。


A. IL-6 克隆载体;B. TGF-p1 克隆载体。M. 2000DL Marker;1,4. 陶性菌落;2,3. 假阳性菌落;5. 阴性对照;6~9. 阳性菌落 A. Clone vector of IL-6;B. Clone vector of TGF-p1, M. 2000DL Marker;1,4. Positive colony;2,3. False positive colony; 5. Negative control;6—9. Positive colony


图 2 奶山羊 IL-6 与 TGF-β1 基因克隆载体的 PCR 鉴定 Fig. 2 PCR of dairy goat IL-6 and TGF-β1 colony

2.3 IL-6 与 TGF-β1 基因原核表达载体的鉴定

pET-32a-IL-6 表达载体经 PCR 鉴定获得了 339 bp 的去信号肽 IL-6 目的片段(图 3-A), pET-32a-TGF-β1 表达载体经 PCR 鉴定获得了 552 bp 的去信号肽 TGF-β1 目的片段(图 3-B)。测序鉴定

结果表明获得了预期长度的序列。上述结果表明, IL-6 和 TGF-β1 基因片段已成功插入到表达载体 pET-32a中,获得了碱基序列和片段长度与预期结 果完全一致的表达载体,pET-32a-IL-6 和 pET-32a-TGF-β1 表达载体构建成功。

A. IL-6 表达载体; B. TGF-β1 表达载体。M. 2000DL Marker; 1~4. 阳性菌落; 5. 阴性对照; 6~9. 阳性菌落 A. Expression vector of IL-6; B. Expression vector of TGF-β1. M. 2000DL Marker; 1~4. Positive colony; 5. Negative control; 6—9. Positive colony

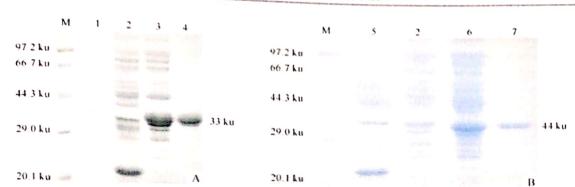

图 3 奶山羊 IL-6 与 TGF-β1 基因表达载体的 PCR 鉴定

Fig. 3 PCR identification of IL-6 and TGF-β1 gene expression vector in dairy goat

2.4 IL-6 与 TGF-β1 重组蛋白的表达与纯化

达出奶山羊 II-6 和 TGF-β1 融合蛋白;纯化结果 (图 4)表明,获得了较纯的 II-6 和 TGF-β1 融合蛋白。

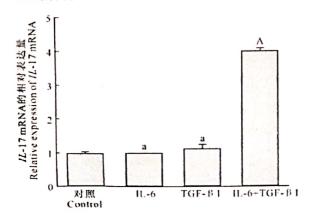

- M. 蛋白 Marker; 1. 未诱导的 pET-32a-1L-6 重组菌; 2. 诱导的 pET-32a 空载体; 3. 诱导的 pET-32a-1L-6 重组菌; 4. 纯化的 H-6 重组蛋白;
 - 5. 未诱导的 pET-32a-TGF-31 重組備 :6. 诱导的 pET-32a-TGF-31 重組備 :7. 纯化的 TGF-31 重組蛋白
 - M. Protein Marker: 1. Uninduced pET-32a-IL-6 recombinant bacteria: 2. Induced empty vector pET-32a:
 - 3. Induced pET-32a-IL-6 recombinant bacteria; 4. IL-6 purified protein; 5. Uninduced pET-32a-TGF-β1 recombinant bacteria; 6. Induced pET-32a-TGF-β1 recombinant bacteria; 7. TGF-β1 purified protein

图 4 重组 IL-6 蛋白(A)和 TGF-β1 蛋白(B)的诱导表达与纯化

Fig. 4 Induced expression and purification of recombinant IL-6 protein (A) and TGF-β1 protein (B)

2.5 IL-6 与 TGF-β1 重组蛋白对 PBMCs 的体外 诱导作用

从 real-time PCR 结果(图 2)可以看出,用重组蛋白 IL-6 和 TGF-β1 分别单独刺激奶山羊 PBMCs,均不能使 IL-17 mRNA 相对表达量升高,而 TGF-β1 和 IL-6 共刺激则可使 IL-17 mRNA 相对表达量极显著升高,表明制备出了可明显促进 PBMCs 的 IL-17 mRNA 表达水平升高的奶山羊 IL-6 和 TGF-β1 重组蛋白。

与对照组相比·图柱上标 a 表示差异不显著(P>0.05)。 标 A 表示差异极显著(P<0.01)

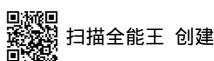
Compared with the control group a indicates insignificant difference (P>0.05) and A indicates extremely significant difference (P<0.01)

图 5 IL-6 与 TGF-β1 联合刺激对 PBMCs IL-17 mRNA 相对表达量的影响

Fig. 5 Effect of IL-6 and TGF-β1 stimulation on relative expression of IL-17 mRNA in PBMCs

3 讨 论

IL-6和 TGF-B 是机体免疫反应过程中非常重 要的 2 种细胞因子[18-20]。IL-6 主要由纤维母细胞、 单核/巨噬细胞、T 淋巴细胞、B 淋巴细胞、上皮细胞 等分泌,在 T、B 淋巴细胞和单核细胞的分化增殖以 及抗感染反应、炎症反应等过程中发挥着重要作 用[21-23]。 TGF-β 可由机体多种细胞分泌,单独的 TGF-β 在机体免疫调节中发挥着重要作用[24-25],其 与 IL-6 协同作用则可诱导 Th17 分化,产生效应 Th17 细胞,分泌 IL-17 从而介导组织局部或者系统 性的炎症反应^[26-28]。IL-17(IL-17A)是一种重要的 促炎性细胞因子,其与带有 IL-17 受体的靶细胞结 合,可以激活天然免疫细胞和组织细胞,诱导促炎性 细胞因子和趋化因子的分泌,募集大量中性粒细胞 到达病原所在组织并清除病原体[121]。有充分的研 究资料表明,在 TGF-β1 和 IL-6 的共同作用下,小 鼠 Th 细胞能够分化形成 Th17 细胞[11.11]。也有研 究结果显示,体外培养系统中,只需要 IL-1 和 IL-6 就足以诱导人效应 Th17 细胞的产生[15-16]。但更深 入的研究结果揭示, TGF-β 仍是人 Th17 细胞产生 必不可少的细胞因子[28-29]。本研究结果表明,原核 表达的奶山羊 IL-6 和 TGF-β1 在体外协同作用,具 有促进奶山羊 PBMCs 合成产生 IL-17 mRNA 的效 应,且 IL-17 mRNA 的表达量显著升高,提示原核 表达的 IL-6 和 TGF-βl 具有免疫活性。同时也表 明,在奶山羊 Th17 细胞的分化中,TGF-β1 和 IL-6 仍属于关键的细胞因子,与小鼠、人 Th17 细胞分化 条件基本一致,这为进一步探讨奶山羊抗感染免疫、炎症性疫病等机理提供了很好的试验材料。


[参考文献]

- [1] 王 谢.赵继红,房瑞东、等. 奶山羊养殖区特色产业研究:以陕西省富平县为何 [J]. 中国草食动物科学,2017,37(3):56-60. Wang S.Zhao L H.Fang R D. et al. Study of characteristic industry of dairy goatbreeding area; for example Shaanxi Fuping [J]. China Herbivore Science, 2017, 37(3):56-60.
- [2] 魏志杰, 奶山羊舍饲规模养殖生产经营管理重点环节探析 [J]. 裔教曾医杂志,2013,32(5):47-49.
 Wei Z J. Analysis on key links of production and management of dairy goats [J]. Journal of Animal Science and Veterinary Medicine, 2013,32(5):47-49.
- [3] Gelasakis A I. Angelidis A S. Giannakou R. et al, Bacterial subclinical mastitis and its effect on milk yield in low-input dairy goat herds [J]. Dairy Sci. 2016, 99(5); 3698-3708.
- [4] Hosaman M. Scafliarini A. Bhanuprakash V, et al. Orf; an update on current research and future perspectives [J]. Exp Rev Anti Infect Ther, 2009, 7(7):879-893.
- [5] 夏 莉. 山羊传染性胸膜炎的研究进展 [J]. 中国畜牧兽医文 携.2016.32(9):124.
 Xia L. Progress in research on goat infectious pleurisy [J]. Chinese Abstracts of Animal Husbandry and Veterinary Medicine, 2016.32(9):124.
- [6] 競运亮. 我国奶山羊主要养殖省份隐性乳炎的调查及病原菌多重 PCR 检测方法的建立 [D]. 陕西杨凌: 西北农林科技大学, 2013.

 Yao Y L. Investigation of dairy goats recessive mastitis in main breeding provinces of China and establishment of multiplex PCR detection methods for pathogenic bacteria [D]. Yangling, Shaanxi: Northwest A&F University, 2013.
- [7] Cheng H Y. Tang X D. Liu M J. et al. Pathogenicity of blood orf virus isolates in the development of dairy goat contagious pustular dermatitis [J]. Vet Microbial. 2018. 219:178-182.
- [8] Koji T. Michael K. IL-6 and related cytokines as the critical lynchpins between inflammation and cancer [J]. Seminars in Immunology, 2014, 26(1):54-74.
- [9] Kulkacni A B. Huh C G. Becker D. et al. Transforming growth factor β1 null mutation in mice causes excessive inflammatory response and early death [1]. Genetics, 1993, 90;770-774.
- [10] Bettelli E.Carrier Y J.Gao W D. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells [J]. Nature.2006.44(1):235-238.
- [11] Paul R M, Laurie E H, Darrell B O, et al. Transforming growth factor 3 induces development of the TH17 lineage [J]. Nature, 2006, 441;231-234.
- [12] Mosolygo T. Koresik J. Balogh E P. et al. Chlamydophila pneumoniae re-infection triggers the production of IL-17A and IL-17E. important regulators of airway inflammation [J]. Inflamm Res. 2013.62(5):451-60.
- [13] Narita K. Asan K. Nakane A. et al. IL-17A plays an important

- role in protection induced by vaccination with fibronectinbinding domain of fibronectin-binding protein A against Staphylococcus aureus infection [J]. Med Microbiol Immunol. 2017. 206(3): 225-234.
- [14] Veldhoen M. Hocking R J. Atkins C J. et al. TGF-β in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells [J]. Immunity. 2006.24:179-189.
- [15] Benwell R K. Lee D R. Essential and synergistic roles of IL1 and IL6 in human Th17 differentiation directed by TLR ligand-activated dendritic cells [J]. Clin Immunol. 2010.134(2): 178-187.
- [16] Chung Y. Chang. S. H. Martinez G. J. et al. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling [J]. Immunity. 2009. 30(4):576-587.
- [17] Sinnathamby G. Renukaradhya G J. Rajasekhar M. et al. Immune responses in goats to recombinant bemagglutinin-neuraminidase glycoprotein of Peste des petits ruminants virus: i-dentification of a T cell determinant [J]. Vaccine. 2001. 19; 4816-4823.
- [18] Zhou L. Ivanov I I. Spolski R. et al. II.-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and II.-23 pathways [J]. Nature Imunology. 2007, 8(9): 967-974.
- [19] McGeachy MJ. Bak-Jensen K S. Chen Y. et al. TGF-β and IL-6 drive the production of II-17 and IL-10 by T cells and restrain TH-17 cell-mediated pathology [J]. Nature Imunology. 2007,8(12):1390-1397.
- [20] Shull M M.Ormsby I. Kier A B. et al. Targeted disruption of the mouse transforming growth factor-pl gene results in multifocal inflammatory disease [J]. Nature, 1992, 359 (6397): 693-699.
- [21] Franckhauser S. Elias I. Rotter S V. et al. Overexpression of IL6 leads to hyperinsulinaemia. liver inflammation and reduced body weight in mice [J]. Diabetologia, 2008, 51(7): 1306-1316.
- [22] Gross V, Zhang B, Geng Y, et al. Regulation of interleukin-6 (IL 6) expression; evidence for a tissue specific role of protein kinase C [J]. Clin Immunol. 1993. 13(5):310-320.
- [23] Grivennikov S, Karin E, Terzic J, et al. II.-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer [J]. Cell, 2009, 15 (2): 103-113.
- [24] Ghoreschi K, Laurence A, Yang X P, et al. Generation of pathogenic TH17 cells in the absence of TGF-3 signaling [J]. Nature, 2010, 467, 967-971.
- [25] Seiffart V. Zoeller J. Klopfleisch R. et al. II.10-deficiency in CD4(+) T cells exacerbates the IFNgamma and II.17 response during bacteria induced colitis [J]. Cell Physiol Biochem, 2015, 36(4):1259-1273.

(下转第15页)

- ment of colitis with Lactococcus lactis secreting the immuno-modulatory Yersinia LctV protein [1]. Gastroenterology, 2007,133(3):862-874.
- [15] Kang Y H. Pan X Y. Xu Y. et al. Complete genome sequence of the fish pathogen Aeromonas veronii TH0426 with potential application in biosynthesis of pullulanase and chitinase [J]. Journal of Biotechnology, 2016, 227(10):81-82.
- [16] Samuel M. lam T J. Sin Y M. Effect of Laminaran [β(1,3)-D-Glucan] on the protective immunity of blue gourami. Trichogaster trichopterus against Aeromonas hydrophila [J]. Fish & Shellfish Immunology, 1996, 6(6):443-454.
- [17] Lamers C H J, Haas M J H, Muiswinkel W B. The reaction of the immune system of fish to vaccination; development of immunological memory in carp. Cyprinus carpio L, following direct immersion in Aermonas hydrophila bacterin [J]. Fish Diseases, 1985, 8(3):253-262.
- [18] Rahman A A, Gryllos I, Tomás J M, et al. Mina-Tn5 induced growth- and protease-deficient mutants of Aeromonas hydrophila as live vaccines for blue gourami, Trichgaster trichopterus (Pallas) [J]. Aquaculture, 1997, 158(1):11-22.
- [19] Azad I S. Shankar K M. Mohan C V. et al. Protective response of common carp orally vaccinated with biofilm and free cells of Aeromonas hydrophila challenged by injection 9 and immersion routes [J]. Aquaculture in the Tropics, 2000, 15(1):65-70.

- [20] Fang H M. Ge R. Sin Y M. Cloning characterization and expression of Aeromonas hydrophila major adhesion [3]. Fish & Shellfish Immunology, 2004, 16(5):645-658.
- [21] Jian S. Wang S.F. Suarez G. et al. Further characterization of a type

 general secretion system (T3SS) and of a new effector protein from a clinical isolate of Λeromonas hydrophila: part [[J]. Microbial Pathogenesis. 2007. 43(4):127-146.
- [22] Philippe V B. Sarah E B. Ottavia B. et al. Antigens of the typethree secretion system of Aeromonas salmonicida subsp. salmonicida prevent protective immunity in rainbow trout [J]. Vaccine. 2013. 31(45):5256-5261.
- [23] 曹晓梅·张虎威·李 曼·等. 鼠疫抗原 LerV 在乳酸乳球菌中的表达与鉴定 [J]. 中国微生态学杂志。2010、22(5):385-388.

 Cao X M. Zhang H C. Li M. et al. Expression and identification of Yersinia pestis antigen gene LerV in Lactococcus lactis [J]. Chinese Journal of Microecology。2010、22(5):385-388.
- [24] Sarah E B. Katja S. Joachim F. The ADP-ribosylating toxin. aexT. from Aeromonas salmonicida subsp. salmonicida is translocated via a type [] secretion pathway [J]. Bacteriology. 2003.185(22):6583-6591.
- [25] 王忠泽·荫 俊·王 威·等. 鼠疫耶尔森氏菌 LerV 基因的克隆与表达研究 [J]. 中国人兽共患病杂志.2001.15(4):12-15. Wang Z Z, Yin J. Wang W. et al. Cloning and high-level expression of Y. pestis LerV gene in E. coli [J]. Chinese Journal of Zoonoses, 2001.15(4):12-15.

(上接第7页)

- [26] Bank U, Reinhold D, Kunz D, et al. Effects of interleukin-6 (IL-6) and transforming growth factor-beta (TGF-beta) on neutrophil elastase release [J]. Inflammation, 1995, 19(1): 83-99.
- [27] El-Behi M. Ciric B. Dai H. et al. The encephalitogenicity of TH17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF [J]. Nat Immunol, 2011, 12 (6):568-575.
- [28] Manel N. Unutmaz D. Littman D R. et al. The differentiation of human TH-17 cells requires transforming growth factor β and induction of the nuclear receptor RORγt [J]. Nature Imunology, 2008, 9:641-649.
- [29] Volpe E. Servant N. Zollinger R. et al. A critical function for transforming growth factor \(\beta \). interleukin 23 and proinflammatory cytokines in driving and modulating human TH-17 responses [J]. Nat Immunol, 2008, 9:650-657.

本科生成绩单

姓名: 倪思璐

性别:女

学号: 2016011019

入学时间: 2016年9月

学院: 动物医学院

专业, 动物医学

班级: 动医1605

学制: 五年

学院: 动物医学院	专业: 动物医学	2		班级: 动医1605	子利: 11年	111 00	14. 14	W /\	N S
课程名称	成绩 性	质 绩点	学分 备	注 课程名称	成绩	性质		学分	备注
	6年秋季			兽医药理学	94	必修	4. 00	4.0	
WI		修 3.70	1.0	创践-大学生创新创业实务	92	任选		1.0	
t品安全与日常饮食 =		选	1.0	音乐鉴赏	合格	任选		1.0	-
4防教育-军事理论		修 4.00	1.0	形势与政策	及格	必修	1.70	2.0	
物学		修 3.30	2.5	201	8年秋季		1 00	0.0	
540 子 E机及分析化学		6修 3.30	5. 0	兽医药剂学●	90	限选	_	2.0	-
中国近现代史纲要		公修 3.30	1.5	兽医免疫学	90	限选		3.0	
大学计算机基础(乙)		公修 2.70	2.5	毛泽东思想和中国特色社会主义理论体系概论	85	必修		3.5	-
等数学(乙)		公修 2.70	5. 5	创业人生	97	任选		1.0	-
本有 1		公修 3.30	1.0	情绪管理	93	任选		1.0	-
大学英语丨		公修 2.30	3.0	动物病理解剖学实习	94	必修		1.0	-
L.程训练(丙)		公修 3.00	1.0	兽医临床诊断学实习	94	必修		1.0	-
五 <u>年</u>		R选	1.0	动物病理解剖学实验	83	必修	_	1.0	-
	17年春季			动物病理解剖学	89	必修		3.0	-
动物解剖学		公修 1.70	3. 0	兽医临床诊断学	87	必修	3. 70	3. 5	
动物解剖学实验		公修 4.00	1.0	201	9年春季	T	1.00	0 -	1
动物解剖学实习		公修 4.00	1.0	兽医内科学	92	限选	-	3. 5	-
有机化学		必修 2.70	4.0	兽医外科手术学	92	限选		1.0	-
无机及分析化学实验	87 4	必修 3.70	1.5	兽医法规	92	限选			
体育Ⅱ		必修 3.70	1.0	兽医外科学	81	限选	_	2. 5	-
线性代数Ⅰ		必修 2.70	2.0	<mark>兽医外科手术学实验</mark>	97	限选		1.0	_
大学英语		必修 2.30	3.0	中兽医学	79	限选	_		2
概率论	73	必修 2.30	2.0	畜牧学 概论	90	限选	_	3. 0	-
程序设计基础 (VB)	73	必修 2.30	3.0	兽医外科手术 <mark>学</mark> 实习	85	必修			+
思想道德修养与法律基础	94 4	必修 4.00	2.5	生物统计学	81	必修	3. 00	2.0	
器械练习与健美	合格 化	任选	1.0	201	9年秋季		1	-	-
职业素养提升		任选	1.0	兽医产科学※	87	_	3. 70		_
	17年夏季	1		兽医寄生虫学实验	96	限选	-	_	_
思想政治理论课实践		必修 3.70	4.0	兽医寄生虫学※	88	限选			
	17年秋季	il tare		动物性食品卫生学实习	97		4.00	_	-
大学物理(丙)	94	必修 4.00	3.0	动物性食品卫生学	84	限选	_	-	+-
有机化学实验	88	必修 3.70	2.0	兽医传染病学实习	97	必修	_	_	+
知识产权法律基础	84	任选	1.0	兽医寄生虫学实习	95	_	1.00	-	+
动物组织胚胎学实验	91	必修 4.00	1.0	兽医传染病学实验	96	限选			+-
体育III	90	必修 4.00	1.0	兽医传染病学	86	_	3. 70	_	+
动物组织胚胎学	87	必修 3.70	3.0	大学生创业导论	93	任选		1.0	
动物生理学实验		必修 4.00			0年春季	777.14		2.0	7
动物生物化学实验	92	必修 4.00	1.0	动物中毒病与毒理学	98		4.00	_	-
动物生理学		必修 3.70		兽医流行病学	95		1.00		-
动物生物化学		必修 4.00	_	兽医临床病理学	93		4.00		-
大学英语[]]	81	必修 3.00	3.0	兽医生物制品学	87	限选	3. 70	2.0	
2	018年春季				下空白	1	_	1	_
大学英语IV		必修 3.30			4 11	+-	+	-	+
大学物理实验(乙)		必修 4.0				-	+	+	-
马克思主义基本原理		必修 3.0	_			-	+	+	+
体育IV		必修 4.0			-	-	-	+	+-
动物病理生理学		必修 3.7				-	-	-	-
兽医微生物学实验		必修 4.0	_			+-	+	-	+
兽医药理学实习		必修 4.0					-	+	+
兽医微生物学		必修 3.0					-	+	+
兽医微生物学实习	97	必修 4.0	0 1.0	H 11 # + 11					
应修学分: 200	己获:	学分: 168	3	学分成绩 85.28 人 子 美	GF	A: 3.	43		

验证码: NAFU IHFI IFBF HIBI GGSD

验证网址: http://print.nwsuaf.edu.ca

第1.0/共1页

2020年9月21日

高等学校国家级实验教学示范中心 联席会 ————

为表彰第五届全国大学生生命科学创新创业大赛优秀成果 奖获得者,特颁发此证书。

作品名称:在乳房炎患羊的乳品质量检测中羊乳αs1-酪蛋白单抗的应用

研究

获 奖 者: 庞明 管雄 左琛香 倪思璐 解雁飞

学校:西北农林科技大学

获奖等级:二等奖(创新类)

证书编号: NDC2020CXCY00519

教育部高等学校生物技术、生物工程类专业教学指导委员会教育部高等学校食品科学与工程类专业教学指导委员会高等学校国家级实验教学示范中心联席会《高校生物学教学研究》编辑部2020年8月23日